
--g-A124 65.9 AN EXTENDED MICROCOMPUTE'R-BASED NETWORK OPTIMIZATION I-
PACKAGE(U) NAYAL POSTGRADUATE SCHOOL MONTEREY CA
M E FINLEY OCT982

UNCLASSIFIED F/G 12/1i N

Ehh~hE~hhEEE

w-

11.12

111111.2~5~ 12812 .

UL. _°__ .. , !I

-' : ,MICROCOPY RESOLUTION TEST CHART

" NAONAL. BUREAU OF STANDARDS-1963-A

p.-

. - .-... .

* w.

, oO.,- 2.' o2.kmiX<.•*:-- .

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
AN EXTENDED MICROCOMPUTER-BASED NETWORK

OPTIMIZATION PACKAGE

by

Michael Edward Finley Li 0
October 1982 , ELECTE

FEB 18 1 83

Advisor: G. G. Brown A

C-

Approved for public release, distribution unlimited

EL.

SSECUIT CLASIICATIOU OF t,.IS PAGE, (111114 Ba. &Met**________________

REPORT OCMENTATION PAGE READ RsTnurrroNs

1. REOR.WW GOV? ACCESO NO. 'ElwS CATALoG, NURsam

14. TITLE (and 111 No) S. Typef or REpot a Pal"oo COVERED
Master's Thesis

An Extended Microcomputer-Based Network Otbr18
Optimization Package ROReOR.RPRTumR

-7. AuTPO0W@) 9. CONTRACT OR GRAWT NU11111e

Michael Edward Finley

9. pgPERFoRulsU OftGANIZAT@W NAME A%6 A00R0SS WS PROGRAM 9L9MENT PROJECT. TASKAREA A WORK UNIT mNMBERS

Naval Postgraduate School
Monterey, California 93940

I I. CONTROLLING OFFICE NAME ANO AGGRSSS 12. REPORT OATS

Naval Postgraduate School October 1982
Monterey, California 93940 NMEROPGS

88
14. M1ONITORING AGENCYV NAME A A001116OW0 d~fbeem 101101 Cmeuuell fee a)S. SECURITY CLASS. (44 tis fdoen

Unclassified
IS& D OCASIfrCATION/OOW#GMAINiG

16o. DiSloRISuTION STATEMENT (a# IN#@ RapeffJ

Approved for public release, distribution unlimited

M7 OISyRIUUTION STATEMENT (a# Mle derset eaelle in 851se to do!!em lea pawt

Is. SUPPLEMENTARY NOTES

19. KE CywoRDS fCaRUlue do leVee. aide It 001100"M OW eedea9f' OF Nooke~e

Network, generalized network, microcomputer, optimization, network with
gains, linear programming, minimum cost network flow, transshipment
model, transportation model, mathematical programming.

2.ABtRACT (CanginIS go .v9We eli. I# mneovi and 9*fr Ws 6110111 WA0n6

The capacitated generalized transshipment problem is the most general
and universally applicable member of the class of network optimization
models. This model subsumes, as specializations, the capacitated and
uncapacitated transportation problems as well as the pure network special-
izations of these models, which include the personnel assignment problem,
the maximum flow, and shortest path formulations. The generalized

O Jr" 1473 EDTON* OF N OV.so Is OSGO"LITE

S/N 002*@4* 405 ISECURITY CLASSIFICATION OF TWIS PAGE eU,4.. Don. r". 1

f*WV euin . *S&GVICTe OV YWa, 41*9olkn Oboe &111111041

network problem, in turn, can be viewed as a specialization of a linear
programuing problem having at most two non-zero entries in each column of
the constraint matrix. A detailed description is given of the implementa-
tion of an efficient algorithm and its supporting data structures, used

* to solve large-scale, minimum-cost generalized transshipment problems on
an Apple II (64K) microcomputer. A suite of advanced techniques for
managing minimum-cost network flow models and inherent data elements will

* also be discussed.

1D Foy 17

*d J010131460 CRT 16SVAON0voeoslb"ow#^*d

Approved for public release, distribution unlimited

An Extended Microcomputer-Based Network
Optimization Package

by

Michael Edward Finley
Lieutenant Commander, Supply Corps, United States Navy

B.A., Cornell University, 1973

Submitted in partial fulfillment of the
requirements for the degree of ,

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL

October, 1982

Author:

Approved by: - I 0.vBRO

Second Reader :

b.

Chalmanh es adsrh

CaraDepartment of.-sac

Dean of Information and Policy Sciences

3

" ...".".........'.."",.."... '- ... -

ft. +,,, f f f f . t- - _t ,i- '. --

ftl

\ ABSTRACT

The capacitated generalized transshipment problem is the most general

and universally applicable member of the class of network optimization

models. This model subsumes, as specializations, the capacitated and

uncapacitated transportation problems as well as the pure network special-

izations of theselmodels, which include the personnel assignment problem,

the maximum flow, and shortest path formulations. The generalized

network problem, in turn, can be viewed as a specialization of a linear

programming problem having at most two non-zero entries in each column of

the constraint matrix. A detailed description is given of the implementa-

tion of an efficient algorithm and its supporting data structures, used

to solve large-scale, minimum-cost generalized transshipment problems on

an Apple II (64K) microcomputer. A suite of advanced techniques for

managing minimum-cost network flow models and inherent data elements will

also be discussed.

"f."

4ft .tt.f...tt. . . . t - f

.... , o ,, .. '. " " + - - -+- .- '.. + . " .. + . +.f -. . ~ •. -. . . . •. . . . -. . - ft -+. ft f. . .o "

TABLE OF CONTENTS

I. INTRODUCTION 9

II. BASIS REPRESENTATION AND DATA STRUCTURES 15

III. ALGORITHM DESCRIPTION 28

. A. PRICEOUT 31

S. RATIO TEST 35

C. PIVOT 44

D.. FURTHER CONSIDERATIONS 60

IV. MICROCOMPUTER IMPLEMENTATION 64

V. CONCLUSIONS AND RECOMMENDATIONS 81

J LIST OF REFERENCES 85

INITIAL DISTRIBUTION LIST 88

5

,o

-.- . ~ -

LIST OF FIGURES

1. Node with a Slack Arc 16

2. Typical Components of a Generalized Network Basis 16

3. Generalized Network Basis Representation 18

4. Matrix Representation of a Basis 18

S. Triangular/Nearly Triangular Basis 19

6. Triple-Label Scheme 20

7. Predecessor Function 22

8a. Preorder of a Tree 23

8b. Extension of a Preorder to Generalized Networks 23

9. GENNET Arrays 27

10. Triangular Basis Component 38

11. Cycle .. . 39

12. Pre-Pivot Generalized Network Basis 46

13. Basis Update Example 1 46

14. Basis Update Example 2 47

15. Cycle Creation 47

16. Preorder-Successor with Depth Zero 50

17. Leaving Arc Above the Join 52

18. Predecessor Update for New Cycle 53

* 19. Four Node Cycle 54

20. All Artificial Start 61

21. Micronet Organization 72

22. Solution Module Selection Logic 76

6

23. Generalized Network Problem ... 79

24. Generalized Network Solution 80

7

NOTATION

Except as otherwise indicated in the text, the following notational

conventions have been used for all mathematical expressions:

Vectors: Lower case Latin (e.g., u)

Vector Components: Lower case Latin with subscript (e.g., ui)

Matrices: Upper case Latin (e.g., A)

Matrix Column: Upper case Latin with superscript column index

(e.g., Nk)

Matrix Row: Upper case Latin with subscript row index

(e.g., Ai)

Matrix Element: Lower case Latin with subscript row and column

indices (e.g., aij)

Set: Upper case script (e.g., AR)

Scalars: Lower case script (e.g., g) if emphasis is required;

otherwise lower case Latin (e.g., i)

8

Tm .; ,2 ,x ,. -:.,: .. ; ,..:,,\ ..- ,.:.-. ,..-.~. .-....,.... .-.. . --.. . . -,.. -. . . . , ,

5 7

I. INTRODUCTION

Since the development of the Simplex method by George Dantzig, and

the introduction of the transportation model by Tjalling Koopmans (both

circa 1947), network models have enjoyed wide use. Perhaps two reasons

for this attention are the frequent occurrence of situations which are

readily modelled as networks and the mathematical and computational

elegance which may be achieved through network specializations of the

Simplex method. Undoubtedly, the visually appealing graphical description

provided by the network formulation has contributed much to the managerial

acceptance of these models. Network models have been used in a large

number of applications. Jensen and Barnes [Ref. 1] provide a number of

examples of network modelling techniques and applications, as do Kennington

and Helgason [Ref. 2], Dantzig [Ref. 3], and Bradley [Ref. 4]. Some of

these applications deal with military logistic and distribution systems,

communications, and pipeline systems, personnel and resource assignments,

and production planning.

In recent years, advances in solid state technology have enabled

design and production of extremely powerful microprocessor-based computers.

The usefulness of these computers to applications of mathematical program-

ming has been largely overlooked by all but a few researchers. The

computational efficiency, speed, and elegance of network algorithms and

the broad range of application of the generalized network formulation

make microcomputer-based network optimization extremely attractive.

* 9

* MVW_ 7 7.

The first microcomputer-based network software suite has been designed

and implemented on an Apple II Plus. This network system exhibits more

capability than any other package available (on any host computer) at

this writing. It is designed as an integrated suite of programs capable

of solving pure capacitated, non-linear, elastic (with fixed charges),

and capacitated generalized network problems and includes a user-friendly

interface which facilitates data input and manipulation.

The capacitated generalized transshipment problem is the most general

and universally applicable of the network optimization models. This

model class embraces, as specializations, the capacitated transportation

problem and the pure network class of models. As viewed here, the object

of these formulations is to determine in what manner a good or commodity

should flow through a network such that flow is conserved at each node

and the total cost of flow through the network is minimized.

(LP) minimize f(x) cost

s.t. Ax = b conservation constraints

lb < x < cp bounds on flow

This problem can easily be formulated as a linear program (LP), however,

the network specialization provides significant computational savings,

often producing solutions in one hundredth the time [Ref. 2] required by

the equivalent linear program. Additionally, the network formulation,

when viewed pictorially as a collection of arcs and nodes, has an obvious

intuitive appeal, making it more readily accepted and understood by

non-analysts [Ref. 4].

-o

.

There is an important difference between the arcs of a pure network

and the arcs of a generalized network; associated with each arc of a

generalized network is a multiplier which acts on the flow through that

arc. The arc multipliers may serve to transform the units of flow or

they may change the amount of flow through an arc [e.g., Ref. 5]. For

example, if we wish to represent the conversion of steel into automobile

chasses at the rate of 1/10 ton of steel per chassis, the arc multiplier

converting tons of steel into chasses would be 10. Ten automobile

chasses can be manufactured from each ton of steel. Alternatively, if

flow on an arc is in terms of investment dollars from one year to the

next at an annual rate of return of 12 percent, the multiplier associated

with the arc representing that investment would be 1.12.

In the spirit of Bradley, Brown, and Graves [Ref. 6] and Brown and

McBride [Ref. 7], the network formulation may be described as a directed

graph G defined by a set of nodes ND and a set of arcs AR. Henceforward,

n will be referred to as the number of arcs in a network and m will

represent the number of nodes. The conceptual constraint matrix A is

thus m rows by n columns.

Members of the arc set are indexed by k and are defined as an ordered

pair (tail, head) or (source node, destination node). Associated with

each arc there is a cost per unit flow Ck, a lower bound on flow lbk,

an upper bound on flow, or capacity, cpk. The flow on arc k is

represented by xk.

The generalized network model employs an arc multiplier mk which

represents a gain or loss in material flowing across arc k. When this

11

arc multiplier is unity for all arcs in the network, the model is then a

pure network specialization of the generalized network model.

Each node can be designated as a supply node (material enters the

network), a demand node (material leaves the network), or a transshipment

node (material just passes through).

The problem is to minimize the total cost of flow on all the arcs,

such-that the flow on each of the arcs remains within the stipulated

bounds, demands are met from available supplies, and flow is conserved at

each node. Conservation of flow requires that the flow leaving a node

minus the flow entering a node equals the external flow or requirement of

that node. In generalized networks, the flow entering a node is the sum

of the flows on the incoming arcs multiplied by the associated arc gains.

These requirements can be written as:

(GNP) min ckxk
kcAR

S.t. xk -k mkxk = bi, Vi e ND conservation
keAR kcAR of flow

leaving i entering i

lb < x < cp, bounds on flow

where 0 < bi = supply quantity, if i is a supply node

O > bi = - (demand quantity), if i is a demand node

O = b. = 0, if i is a transshipment node.
!1

The convention followed here is that supplies are represented by

positive magnitudes and demands are negative. This algebraic template

can accommodate a model with inequality flow constraints, insurinq that

no more than the available supply will be utilized and that no less than

7 12

the demand will be provided. Slack arcs represent the difference between

available supply and that portion actually used, and surplus arcs measure

the extent to which shipments exceed demand. When slack and surplus arcs

are utilized in this manner, a formulation which uses inequality con-

straints can be transformed to the equality constraints of (GNP). Slack

and surplus arcs are considered to be "logical" arcs as opposed to the

"structural" arcs of the original problem.

(GNP) is a specialization of (LP). If each column of the constraint

matrix A in (LP) corresponds to an arc, then it has at most two non-zero

entries; those entries can be scaled to be +1 (for the tail) and some

other number -mk (at the head). Thus, the constraint matrix of (GNP)

contains elements that are either 0, 1 or -mk (each mk is admissably

distinct). When the Ax matrix multiplication of (LP) is enforced, we

obtain the flow conservation constraint found in (GNP). There is thus

one conservation of flow constraint in (LP) for every node i: Aix,

where Ai is the row in A corresponding to the ith node in (GNP),

having row entries of +1 for every arc originating at node i, and -mk

for every arc terminating at node i. There is also a pair of bounds in

(LP) and in (GNP) for every arc in the network.

(GNP) is sufficiently broad to enable any linear program, with at

most two non-zero coefficients associated with each variable (column), to

be treated as a generalized network. Even when the linear program is not

entirely composed of network columns, Brown and Wright [Ref. 8] have

shown that many real-life linear programs contain a large embedded

network structure which, once discovered, can be exploited to improve

solution efficiency [Ref. 7].

13

|_7

Solution speed and efficient data storage techniques are two of the

most attractive features of the network model. Due to the obvious

sparseness-of the network constraint matrix, the use of a node-arc

incidence matrix is not a viable method of basis representation for data

manipulation. Space and speed-efficient methods of handling the represen-

tation and manipulation of the generalized network problem are introduced

in the following sections. The algorithm which will be described is

called GENNET [Ref. 7].

14

If. BASIS REPRESENTATION AND DATA STRUCTURES

The constraint matrix A of (LP) represents a set of m linear equations

in n unknowns. If m < n, a feasible solution to these constraints may be

found by identifying m linearly independent columns of the constraint

matrix A. If the variables associated with the remaining n-M columns of

A are set to zero, the values of the variables corresponding to the m

linearly independent columns may be uniquely found by solving the result-

* ing set of exactly determined simultaneous equations. Any set of m

linearly independent columns of A is referred to as a basis. The solution

to the set of linear equations obtained by setting to zero the variables

. corresponding to the n-m columns of A not included in the basis (i.e.,

non-basic columns), is called a basic solution.

A unique characterizing feature of the pure transshipment problem is

the triangular nature of its bases [e.g., Ref. 3]. Triangular bases are

particularly convenient because they are easily solved by direct substitu-

tion [e.g., Ref. 9]. The solution of the generalized transshipment

problem is somewhat more difficult because of a complication introduced

by flow multipliers.

What is now known as the capacitated transshipment problem was first

posed, with a discussion of solution methods, by Koopmans [Ref. 10].

Dantzig [Ref. 3] provides the first general exposition of solution

technique and basis representation of the capacitated generalized trans-

shipment problem, referring to it as the "Weighted Distribution Problem."

Dantzig shows that the basis of a generalized transshipment problem has

15

unique qualities similar to the basis of the pure network. These qual-

ities will be exploited in the problem representation and solution

approach developed here.

A graphical representation of a generalized network basis results in

a familiar node and arc display [e.g., Ref. 2]. The graph thus obtained

is not necessarily a tree, as in the case of pure networks, but may be a

forest whose members are either trees or trees with one cycle (or loop).

If slack variables are admissible, then the network must also include

slack arcs, each incident with only one node. Figure 1 displays a node

with a slack arc.

Figure 1. Node with a Slack Arc

I Danzig [Ref. 3] shows that each component of the basis is either a

rooted tree or a subgraph with one cycle. Figure 2 displays typical

components of a generalized network basis. A rooted tree may be viewed

as a suograpn with a slack arc (and thus one cycle) at the root. Each

Figure 2. Typical Components of a Generalized Network Basis

16

*,'. . ,%' - . , , " -. S.-.. ." "- - a. "

component of the basis is a connected subgraph with precisely one cycle.

The basis representation of a generalized network is "block diagonal," as

pictured below. The diagonal entries are submatrices corresponding to

B1

B2

IBB g

the component trees/subgraphs of the generalized network basis. Those

i elements representing rooted trees are upper triangular, as they are in

'" the pure network case. Dantzig [Ref. 3] shows that basis components

l corresponding to subgraphs having one cycle may be put in "nearly tri-

ll angular" form, with only one column having a non-zero term remaining

I .

• below the diagonal. If the variable associated with that "peculiar"

~column is treated as a parameter, values for the variables associated

wi t he other columns can be obtained in terms of that parameter. These

expressions (in terms of the one unknown variable) can be uniquely

solved, thereby obtaining a complete basic solution [Ref. 3]. A solution

method for generalized networks suggests itself; exploit the triangularity

of rooted basis components with efficient data structures and use the

method proposed by Dantzig for nearly triangular basis elements.

17

To illustrate these concepts suppose we have the basis representation

displayed in Figure 3.

992

Figure roted ~*wIh doibarc a rw i th an 6

Fiue3. Generalized Network Basis Representation

There are six nodes and thus six arcs in this basis, one of which is

a slack arc (arc a) corresponding to the root node of its basis tree.

The matrix representation of this basis is shown in Figure 4.

Arc a b c d e f

Node

21 -mm1

5 d

61 m

Figure 4. M4atrix Representation of a 3asis

18

The multiplier associated with slack and artificial arcs is -1 and

a multiplier of +1 is' used for surplus arcs. Thus, ma - -1 since arc

*"" *a" is a slack arc. Permuting the rows of this basis matrix produces:

Arc a b c d e f

Node
4 I

5 -m 1

13 -me

6 -mf

Figure 5. Triangular/Nearly Triangular Basis

The dotted lines segregate the two basis components B1 and B2 .

Note that Bi corresponds to a rooted tree and is thus upper triangular.

B2 is "nearly triangular." There is one "singleton" column in the

basis which corresponds to the slack arc a.

The sparsity of the constraint matrix and the graphical structure

of the model lead us to adopt one-dimensional data structures to represent

the problem. These data structures provide economical storage and reduce

computational overhead. The two most common types of data structures

found in network optimization algorithms are the triple-lable scheme,

first proposed by Ellis Johnson [Ref. 11] and the preorder traversal

method, as described by Bradley, Brown, and Graves [Ref. 6].

19

The triple-label scheme employs three functions to represent the

basis graph: a predecessor function which provides the parent, father,

or immediate ancestor of a node; a successor function which provides the

left-most child of a node (sometimes called the eldest son); and a

brother function which provides the next left-most node with the same

parent (i.e., the next oldest brother or sibling). These functions are

exhibited in Figure 6.

2 3

5 6 7

Node Predecessor Successor Brother

1 0 2 0
2 1 5 3
3 10 4
4 1 6 0
5 2 0 0
6 4 0 7
7 4 0 0

Figure 6. Triple-Label Scheme

The triple-label scheme has been adopted by several researchers

LRef. 12 for the (pure) transportation network problem and Ref. 13 ;or

generalized networks]. Brown and MWcBride [Ref. 7] have tested, but

not adopted, this data structure. Kennington and Helgason [Ref. 2]

and Jensen and Barnes CRef. 1] repeat textbook explanations of the

required basis update actions for the triple-label iethod of basis

representation.

20

E:.1

The preorder traversal method uses two functions to represent and

update the basis: a predecessor function P and a preorder function IT.

The predecessor function provides the same information as in the triple-

label scheme, i.e., the "father" node. The predecessor function can be

easily constructed from the matrix representation of the basis (e.g.,

Figure 5). After rearranging the rows and columns and forming triangular/

nearly triangular components of the basis, to find the predecessor of

node i:

1. Determine the row number of node i, call that row rl.

2. Determine the row of the non-zero off-diagonal element of column
rl, call that row r2.

3. The predecessor of node i is the node represented by row r2. If

no off-diagonal element is found in step 2, the predecessor of node
i is nbll. (An array P may be used to represent the predecessor
function and a distinguished value, e.g., m + 1, can indicate nodes
with no predecessors.)

Each node and its predecessor define the basic arc (ignoring for the

moment the arc's orientation). The predecessor function can be used to

construct a "backpath" from any node to the root/cycle of its basis

component. The orientation of the arc in the original network can be

recorded using the sign of the predecessor. If the arc is oriented from

node i to P(i), then P(i) > 0; if P(i) < 0, then the arc is directed from

P(i) to i.

When determining the predecessor of a node i, if a multiplier (-mk)

is discovered on the diagonal of the nearly triangular basis matrix, then

P(i) < 0. The multiplier value is associated with the "destination end"

of a basic arc. The arc k represented by a column having -mk on the

diagonal of the basis matrix is oriented from P(i) to i.

21

The sign of the predecessor uniquely determines the diagonal entries

of the basis matrix. If P(i) < 0, the diagonal entry in the row represent-

ing node i is -mk; if P(i) > 0, the diagonal entry is +1. A predecessor

function applied to Figure 3 yields:

Arc a b c d e f Node Predecessor

Node

1 1 7=i+1

2 -mb 2 -1

r2 4 -m 1 3 -5

5 -md 1 4 -3dI
3 -me I 5 -4II

rl 6 -mf 6 -4

Figure 7. Predecessor Function

A node may have "successors" or nodes which are further from the

root/cycle than the node in question. The set of nodes which are first

encountered on all paths from a node, except the path to the root/cycle,

are called the "immediate successors" of the node. A basis may alterna-

tively be completely represented by this successor relationshio. However,

because any node can have a variable number of successors but only one

predecessor in the basis, the predecessor function provides a more

• 2tractable data structure.

In the example presented in Figures 5 and 7, node 4 is the predecessor

of both nodes 5 and 6. Clearly, the predecessor function does not

completely represent the triangulated basis. The piece of missing

22

.......

information is whether node 5 or node 6 is encountered first (top to

bottom) in the triangulated basis.

The technique employed here to represent this ordering is an exten.sion

to m-trees of the preorder binary tree traversal described by Knuth [Ref.
14].

Graphically, preorder is a dynastic ordering reminiscent of the inheritance

of thrones, in which the root or top-most node is listed first and its

subtrees are listed in preorder, until every node is listed. Figure 8a

displays such a preorder.

A
Preorder AaC.DEFGH

0 G H

Figure 8a. Preorder of a Tree

Figure 8b illustrates an extension of preorder to the bases of general-

ized networks. The extension of oreorder to "trees" with cyclic roo:s requires

that one node on the cycle be distinguished as the first oreorder node. The

choice of that distinguished node is arbitrary amongst the cycle nodes.

A

c5

E F PEOROER
C, .. EF. B.G, A, 4, I. J

Figure 8b. Extension of Preorder to Generalized 4etworks

23

The matrix structure of the triangulated basis also induces a preorder.

Row i always precedes its successors in the triangulated/nearly tri-

angulated basis and all of its successors precede any row which does not

precede row i [Ref. 15].

To summarize, the basis representation we have established is contained

in the functions P and IT. P indicates the predecessor of every node in

the generalized network. IT provides the preorder-successor of each

node. By "iterating" IT (e.g., IT(i), IT(IT(i)), IT(IT(IT(i))) ... ,

all the preorder-successors of node i may eventually be found. Iteration

of the predecessor and preorder functions provides a means of tree

traversal. The preorder traversal scheme is considered to be the more

elegant and efficient means of basis representation and as such will be

used in this description of the GENNET algorithm.

The predecessor and preorder functions are implemented as arrays P

and IT. P(i) indicates the predecessor of node i. Similarly, IT(j)

indicates the preorder-successor of node j. Associated with each node j

is an arc which connects node j with its predecessor P(j). This arc

corresponds to a basic variable. The index of, or pointer to, the arc

connecting node j and node P(j) is maintained in IVAR(j), an element of a

node-length (i.e., m x 1) array IVAR. The sign bit of P(j) records the

*.- orientation of the arc connecting nodes j and P(j). If P(j) > 0, then

the arc connecting node j and its predecessor is oriented from node i to

P(j); an arc oriented from the predecessor of node j to node j is

indicated by P(J) < 0.

Several "housekeeping" arrays are used to support the basis data

structures. An array 0 is maintained to store the depth of each node.

24

Jensen and Barnes [Ref. 1] seem to dismiss the preorder traversal scheme

of basis representation for generalized networks due to the apparent

difficulty of assigning depths to the nodes of a cycle. This difficulty

is overcome by defining the depth of all cycle nodes to be 0. The depth

of a node not on a cycle is one more than the depth of its predecessor.

Additional node-length arrays include U which contains the values of

the dual variables (or simplex multipliers) and X which contains the

value of the right-hand side for each node's conservation of flow equation.

A node-length array FAC is used to store cycle factors and array

PC stores information about the incoming non-basic column and is used to

effect a simplex pivot. These arrays will be discussed later.

To associate arc numbers with the node pairs connected by an arc,

we maintain two arrays: T and H. T is an arc-length array which stores

the tail, or source node, of each arc. If the arcs in T are sorted so

that all arcs with the same head node are listed contiguously, a space

savings can be effected by only storing, for each node i, the location

of the first arc whose head, or destination, is i. This information is

stored in a node-length array H; H(i) contains the index of the first arc

in T whose head is node i. Thus, the tails of all the arcs whose head is

node i are: T(H(i)), ... T(H(i + 1) - 1). If H(i) : H(i + 1), then no

arcs terminate at node i.

Associated with each arc are arrays which describe the arc's character-

istics. These arrays are naturally indexed by arc number. The array

-. CP stores the capacity or upper bound on flow, C contains the cost oer

unit flow, and MUL contains the arc multiplier or gain.

25
.0

It is only necessary to consider upper bounds in the solution pro-

cedure as long as we "transform out" any lower bounds required by the

model. For an arc k, from node i to node j with lower bound lbk, this

transformation is easily performed as follows:

CP(k) <== CP(k) - lbk

Obj <== Obj + lbk * C(k) where Obj is the value of
the objective function;

if i j

X(i) <== X(i) - lbk

X(j) <== X(j) + lbk * MUL(k);

if i = j

X(i) <== X(i) - lbk * MUL(k).

An arc k, out of the basis at its upper bound, is "reflected" by logically

replacing its flow variable xk by (cpk - xk) and that reflection is

recorded using the sign bit of CP, reminiscent of bounded variable simplex

methods [e.g., Ref. 3]. Figure 9 summarizes the suggested arrays.

26

- '- , .. , .: ., ;- , .. "-'.." ' . . ".. _ " _ .

Name Length Use

P Node Predecessor

IT Node Preorder-Successor

D Node Depth

X Node Right-Hand Side

U Node Dual Value

FAC Node Cycle Factor

IVAR Node Basic Variable

PC Node Pivot Column Information

H Node Head Node Pointer

T Arc Tail Node

CP Arc Upper Bound

' C Arc Cost

MUL Arc Arc Multiplier

Figure 9. GENNET Arrays

27

111. ALGORITHM DESCRIPTION

As with any simplex-based algorithm, the solution of the generalized

network problem, (GNP), involves three fundamental operations: priceout,

ratio test, and pivot. Non-basic variables (arcs) are individually

examined in the priceout to determine if inclusion in the basis can yield

a better value of the objective function. Given a favorable incoming

variable, a ratio test is performed to determine whether changing flow on

the incoming variable will result in the incoming variable achieving its

opposite bound or a basic variable being driven to one of its bounds.

The variable first reaching a bound is deemed "outgoing." Finally, the

incoming variable replaces the outgoing variable in the basis via the

pivot operation. We examine each of these fundamental steps and their

specialization to generalized networks using the representations and data

structures presented in the previous section.

*. First, however, it is appropriate to review some of the principles

of the revised simplex method [e.g., Refs. 16, 17]. Consider the

following LP:

(LP') min cx

s.t. Ax =b (A is m x n)

0 < x < cp.

The matrix of technological coefficients A may be partitioned into

a basic square sub-matrix B (i.e., B is a basis) and a non-basic sub-

matrix N. If B consists of the first m columns of A, then A EB, N].

28

. * . .- .. *o ° ,-

Similarly, we may partition the variable and cost vectors x and c as:

X - (XB, XN) and c = (ce, CN). (LP') becomes:

min cx cBxB +

s.t. Ax = [B, N][XB]u BxB + NxN = b
x N

x > 0.

The upper bounds in the original formulation may be taken into

account by "reflecting" any variable at its upper bound. That is, the

value of a reflected variable is measured as the "distance" from its

upper bound cPk (as opposed to the more natural way of measuring values

as distance from the lower bound 0). Any variable at its upper bound

cPk is replaced by (cpk - Xk); to effect this change, coefficient

column k is replaced by its negative -Ak and the right-hand side is

transformed to b - Akcpk.

The solution to the LP is obtained as

BxB + NxN = b

x= B-1 b BINx
%N'

Substituting this into the cost equation:

c B NX N cNxN

-1 1
a, BB _ - c B x N + C NXN

a C BB ib + (cN -cBB'IN)xN (the cost of the current
solution in terms of XN).

-a

Every basic solution to the LP has the characteristic that xN 0

and thus the cost of that basic solution is c.8 b. By changinq

29

a .

the current basic solution and thereby making an element of x N non-zero,

the cost of the solution would change by the amount (cN - CBB'N)xN.

If CN c BB- N < 0, then the overall cost would be reduced. Thus,

elements of xN for which cN - CBB 1 N < 0 are desirable candidates

to enter the basis. cN - cBB' 1N are called the reduced costs. cBB'

is called the dual solution or simplex multiplier set.

Reviewing the algebraic development of the ratio test, we begin

with the general expression for the basic variables (1).

X - B'b - NxN

If XkeXN is the incoming non-basic variable, we obtain

.B B- Bb - Zkxk; where Z -BlNk is the

current incoming column.

To preserve feasibility, each of the x's must remain within its respective

bounds (0, cPk). The three constraining conditions searched for by

the ratio test are that the incoming variable:

(a) reaches its opposite bound:

xk = cpk

(b) drives a basic variable to its opposite bound:

xB - Zikx k = cPBi for zik < 0

k i ikA"''"" Xk = (xB " CPB-.= X i)/Z ik

(c) drives a basic variable to its current lower bound:

x8 ZikXk - 0 for Zik > 0

x k x B/zik where Bi indicates the variable which is basic

in row i of the constraint matrix and z ikis the

corresponding ith element of Zk.

30

The pivot operation updates the current solution to exhibit the

exchange of basis elements. This is accomplished by updating the represen-

* ~ tation of B-1 and the right-hand side B'Ib via a pivot, or elementary

transformation operation (as B-1 is seldom explicitly extant), using

the incoming column Zk. If the incoming variable reaches its opposite
;

bound, then no basis exchange is required; however, that variable must be

reflected.

Tableau arithmetic is not the most efficient method for manipulatinq

the problem representation of a linear program, nor is it as insightful

as the matrix arithmetic of the revised .simplex method. As shown, the

current inverse of the basis, B-1 , carries with it enough information

to generate any current solution. The fundamental principle of the

revised simplex method is that using only the current B-1 and the

original problem coefficients is much more efficient than manipulating a

complete tableau.

A further enhancement to this method is made by not storing 8"

explicitly but by generating it dynamically as the product of elementary

vectors (which may be efficiently stored due to their sparse nature).

These same principles will be adhered to in the following specialization

of the (revised) simplex method to generalized networks. The mechanism

to update our solution will be based on the dynamic generation of the

equivalent to a revised simplex B
"1.

A. PRICEOUT

As expected, the pricing of non-basic variables is simply the

specialization and simplification of simplex pricing. The reduced costs

31

J7

of the non-basic variables are cN - cBB 'N. Let u CBB' (the dual

solution). Then the reduced cost (rc) for a non-basic arc k is:

k.rck = ck -uN

Nk is a column of the network constraint matrix having at most two non-

zero entries, i.e., +1 (in the row corresponding to the tail of arc k)

and -mk (corresponding to the head of arc k).

The reduced cost of arc k oriented from i to j simplifies to

rck ck - ui + mku j ,

or in the data array notation of Section It

rck = C(k) - U(i) + MUL(K) * U(J).

If arc k is a reflected arc (denoted by CP(k) < 0), then the sign of

rck is reversed. (In reflecting a variable xk, column Nk is

multiplied by -1, the proper cost associated with that variable is,

therefore, -C(k) and the non-zero coefficients in column Nk change to -1

and +mk)

The pricing simplification is one of the key computational advantages

of network models. At most one multiplication, one addition, and one

subtraction is required to price a non-basic variable. In the case of

pure networks mk = 1, the multiplication may be avoided.

As discussed in Section II, the components of the generalized network

basis are triangular or nearly triangular. As a consequence, the value

of the dual variables may be found by forward substitution in the system

of equations uB a c,. This is a simple matter for triangular elements

32

,~~~~~~..'-, , , -. - -... . . -. -.. . .-.- -... -. - . -...- , .- .. -. "- .,

of the basis and once one variable is determined an equally simple

matter for nearly triangular basis elements. A detailed discussion of

the computation of dual variables will be presented with the pivot

operations.

It is common practice, in didactic presentations of the simplex

method, to select the variable with the most negative price as the

-- incoming basis element. This approach requires pricing all the non-basic

variables and can be quite time-consuming, especially in network models

where the number of arcs far exceed the number of nodes. In fact, any

variable which prices favorably will suffice as the incoming candidate

and any pricing mechanism which guarantees discovery of all favorably

pricing non-basic variables will operate correctly.

Several pricing strategies have been suggested. It has been shown

that selection of tire best (most negative price) from a limited number of

favorably priced candidates is superior to simply choosing the first

favorably priced arc [e.g., Ref. 18 for LP and Ref. 5 for GNP].

Some popular pricing strategies are: (a) price out the first g

candidates where g is less than the number of non-basic variables; (b)

maintain a candidate list as adopted by Glover, et al. [Ref. 5] and by

Mulvey [Ref. 19]; and (c) maintain a candidate queue, a strategy which is

employed by Bradley, Brown, and Graves [Ref. 6].

The candidate list strategy maintains a list containing at most

g1 candidates. Each candidate is the most negative arc originating from

a node. Every g2 pivots (or when no candidate prices favorably) the list

is refreshed. If less than 91 favorable candidates are found, then gl is

set to the number of favorable candidates and g2 is halved (unless g2 = 1).

33

..

Mulvey presents computational results to aid in the selection of

gl and g2.

The candidate queue is a dynamic list of "interesting nodes" and

"good arcs." The queue, as described by Bradley et al. [Ref. 6], employs

two arrays, NSA which indicates the head node and ISA which indicates the

tail node of candidate arcs. ISA(k) = 0 and NSA(k) = j indicates that

node j is an "interesting" node. Arc entries are derived from a scan of

all arcs incident to a node, from which the most negatively priced arc is

entered. The candidate queue is initialized by placing demand or sink

nodes (right-hand side < 0) on the queue as interesting nodes. (If no

such nodes are found, the queue is initialized with any node.) A general

scan of a head node will select the most favorably priced incident arc

and place that arc on the candidate queue. Initially, favorable prices

are most commonly caused by inherent infeasibility (i.e., paths do not

yet exist between supply and demand nodes). For the first ne pivots,

- known as the opening gambit, the head and tail of each incoming basic arc

may be entered on the queue as "interesting" nodes.

For each pivot, the incoming candidate is determined by pricing out

nne candidates (including all of the arcs incoming to an interesting

node). If no favorable arc is found within the nne candidates examined,

another nne are examined, and so forth. If the queue is emptied during

the first rna pivots, the queue is refreshed by a general scan of ipg (a

page) of head nodes.

After the end of the opening gambit, the queue is refreshed after

each cycle (pass) through the queue by scanning another page of the head

nodes. As each arc is priced, the favorably priced candidates are

34

,- .. * ' ', '. .-. . -: - . '
"

.. . .' ' -
" .- .----.'. " '. - x , - -

retained in the queue, interesting nodes are replaced by their most

favorable incoming arc and unfavorable candidates are dropped from the

queue. This pricing strategy finally concludes by pricing every non-

basic arc (as every pricing strategy must) to ensure terminal conditions

are met for optimality. Suggested values for ipg, nne, and ms are given

by Bradley, Brown, and Graves [Ref. 6].

The results of any pricing strategy will be the identification of the

head, tail, and arc index of a favorably priced incoming arc (or the

determination that there are no favorably priced non-basic arcs).

B. RATIO TEST

At this point, an incoming arc has been identified and the algorithm

must now select an appropriate outgoing member of the basis. Conceptually

the ratio test identifies the first arc whose flow would reach one of its

bounds as flow is incremented on the incoming arc. The ratio test thus

identifies an arc whose flow would either increase to its upper bound or

decrease to zero if the fullest advantage were taken of the favorable

price of the incoming arc. The incoming arc may well be the constraining

arc identified by the ratio test and therefore, the basis would not

change; however, network flows would be updated with the flow on the

incoming arc being "sent" to its opposite bound by reflection.

For an incoming arc k, the ratio test searches for the minimum of:

(a) CPk

(b) (xB cpB)IZik for Zik < 0 V X8 BCX

(c) XB /Zik for zik > 0 V XB CXB

35

We know cpj j = 1, ... , n and the current basic solution xB . Therefore,

the ratio test can easily be performed if zik i - I, .. m is known.

To determine Zk (the current incoming column), we must solve the system

of equations BZk = Nk (remembering to use -Nk if arc k is reflected).

The obvious algebraic solution of this system is Zk = B-INk.

We can generate Nk on demand since it is the coefficient column associated

with arc k (oriented from node i to node j). We determine i and j from the

H and T arrays and thereby determine the two non-zero entries of Nk as +1

(corresponding to i) and .-mk or MUL(k) (corresponding to j).

We do not have an explicit representation of B-1 and thus must

resort to indirect methods of solution. It is in this endeavor that the

predecessor relationship proves to be extremely convenient. Using the

predecessor array, it is possible to solve for Zk directly by substitution

in the triangular/nearly triangular system of equations BZk = Nk.

Nk is a non-basic column of the constraint matrix and therefore

has at most two non-zero entires: +1 and -mk Nk can be expressed

as:

Nk = ei + (-mkej)

where ei and ej are the ith and jth unit vectors corresponding

to the non-zero entries of Nk . Solving:

BQi = e.

BQj = -mkej,

will lead us to

36

BZ k u Nk

= ei + (-mke.)

SBQi + BQj

=BQ i + QJ)

thus, Zk = i + Qj.

The entering arc connects nodes i and j. Define the "i-backpath" as

the path between node i and its root/cycle. Similarly, define the

"j-backpath" as the path between node j and its root/cycle. It will be
iNi

shown that Q1 and QJ correspond conceptually to the i-backpath and

j-backpath, respectively.

Remember, the basis is made up of disjoint components each of which

is triangular or nearly triangular. Working with triangular components

first, we find for:

BQi a e (or similarly, -mkeJ)

that elements of Qi beyond the ith component must be zero. This can be

seen by solving the triangular system. If ei is of dimension h x 1 and

i < h, then ei(h) = 0, thus Qi(h) = 0. If i < h - 1, then ei(h - 1) = ,

and since Q'(h) = 0, then Qi(h - 1) = 0. The same reasoning applies to

Q1 (i + 1) Q1(i + 2) = = Q1(h) = 0. The ith element of Q must be +1

or -mk. If there is an entry in the triangular matrix for the predecessor
(th

of i, which is in the ith column, it will produce a non-zero multiplica-

tion and thus must be offset by an entry in the P(i) row of Q1, since ei
has only one non-zero entry. That "offsetting" element ira& ilso have a

predecessor and thus another non-zero entry in Qi will be appropriate.

Qi will therefore have non-zero entries in rows i, P(i), P(P(i)), etc.,

(i.e., the i-backpath). The preceding argument also applies to QJ,

which will have non-zero entries in only rows j, P(j), etc.

37

.A 1

-

To see this and to determine the non-zero entries of Q, consider

the triangular system in Figure 10.

Iaroot

IP . bp(p(p(i)))

S"()ap(p(i)) b~()

ap(i) bp~i)

" i

Figure 10. Triangular Basis Component

The values of a and b are dependent on the original arc orientation

(recorded by the sign bit of the predecessor array P; if P(j) > 0, then

Sa +1 and b is the negative of the multiplier value (-ink); if

P(j) < 0, then a -mk and b = + j = r, (i), . , root. Solving:

Ka0 bI Q0 0

a 0

here. 1 o -m "'

38 a b i 0
:" "-1 i -

:':i. here s -1 or -k ,

o38

% . .- ° '..% '.'.%.".,-4"-. .4,o. ". . . -." . _.. . . - .. .

we obtain:

qi s/ai
:" qi-I * (biqi)/ai-l;

and in general
m qh ""(b h+lqh+l)lah, 0 <.h<i

If we are dealing with a nearly triangular basis element, we again

find that the only non-zero entries in Qi occur in entries corresponding

to the backpath between node i and the "root" cycle. Suppose the entering

arc is incident to node i which is on the cycle shown in Figure 11.

r Ip(i)i

Figure 11. Cycle

The backpath is thus i, P(i), P(P(i)) ... r where P(r) i i. The nearly

triangular basis component is as follows.

ar

i %(b(Pp()))

Sp(i) bP(i)
b~P(r) a

39

-. , . .. -I J L , ¢wm a ,. .k - ,, = -- ' .. mtm. . . . -

- Solving:

Iao b1 go q0 01
I,a q I 0

I(2)

Sb i-1 I •

Iai- bi qi- I 0

b0 ai qi s

where s = 1 or -mk and the a's and

b's are as before;

we obtain

qi = (s/ai)(1/f)

and qh = " (bh+lqh+l)/ah, 0 < h < i,

i
where f = 1 - II (bh/ah).

h =0

The solution procedure is described by Oantzig [Ref. 3]. The nearly

triangular system can be easily solved with one of the variables appearinq

as a solution parameter thereby creating a triangular system. That

parameter can then be determined as the solution to a pair of two-variable

simultaneous equations. Kennington and Helgason [Ref. 2] give a detailed

derivation of the solution. A similar solution technique is illustrated

herein with the discussion of the dual update.

40

-/ --•- .."- ,.'- "- .- " - - "- .* . -° -. .,..-,-.i.. ..

These equations are the same as in the triangular case except for the

use, once, of the cycle factor f. The cycle factor .(or loop factor,

Dantzig) is the same for every node on the cycle and may be computed when

the cycle is created. The array FAC is used to store the cycle factor so

that it is available for immediate use. The update of FAC will be

discussed in the pivot section. Again, the above solution procedure for

Qi applies equally well to determining QJ.

We have approached this problem as if there are two distinct backpaths.

However, the incoming arc may be such that the two backpaths converge. The

node at which the backpaths meet is known as the "join." The two separate

systems of equations must be solved up to the join using the iterative

* , method discussed above. The separate solutions for qjoin obtained from

* - the converging backpaths should be added: qjoin qjoin, i + qjoin, j

and only one consolidated backpath need be computed after the join

using the same interative formula:

-b h+1qh+1
.. qh =a,

The q's obtained are the elements of Zk we need to compute ratios.

For use in the pivot, we store these values in the array PC. The array

PC contains B"I4 , which, in revised simplex terms, is the incoming

non-basic column updated by the current 8

Obviously, detection of a join is extremely important in reducinq

the number of computations required to compute ratios. The depth array D

is used to help detect a join in the following way. Let arc k, joining
'4

node i and node j, be the entering arc; let i refer to the node which is

41

_ -..4 • , . .

-'-. - - . - ,.r

currently being "visited" on the i-backpath and let j indicate the node

currently "visited" on the j-backpath.

We begin with i and j as the origin and terminus of arc k. The

depths of i and j are compared and the backpath of the one with the

greater depth is iterated using the predecessor relationship. Ratios and

the non-zero elements of Zk are found one at a time as each node on the

backpath is visited. If the j-backpath is deeper, we iterate it back

until the depth is the same as the i-node. The current i- and j-nodes

are checked to see if they are the same node. If they are, the current

element of Zk is computed as the join and the common backpath is

iterated, continuing to search for the minimum ratio. If the two nodes

are not the same, then the i-backpath and the j-backpath are both iterated

once and a join is checked for again.

In summary, the mechanics of the ratio test are: if arc k(i, j)

is the entering arc, determine the minimum among:

" 1. cpk

2. (xB - cPBi)/zik for Zik < 0 V XB xB

3. x IZik for zik > 0 Vx ex.

To do this:

(a) Determine cPk as CP(k).

(b) Determine whether the i-backpath or j-backpath is deeper by

checking the depths of nodes i and j, the origin and terminus of the

entering arc. Let i refer to the node currently being visited on the

i-backpath and j refer to the current node on the j-backpath. Using the

predecessor relationship, iterate up each backpath, performinq the steps

described below on each node encountered. When the current i and j

42

.- , - . ". . . . , . "- '. . . . ". . " " . . " , " "" ". " . .:

nodes are of the same depth, check for a join. If a join is found, add

the values of "q" for that node obtained from each separate backpath to

obtain qjoin" If a join is not found, iterate up one level on both the

i- and j-backpath and check for a join again.

(c) Determine the right-hand side of the triangular/nearly triangular

system of equations (2). This is accomplished by setting s = 1 for the

i-backpath (starting at the tail of the entering arc) and setting s = -mk

for the j-backpath (starting at the head of the entering arc) in

equation (2).

(d) For each node on the i- and j-backpath, determine the siqn of

the current node's predecessor P(i). Use this to determine a and b in

equation (2) as P(i) > 0 => a = 1, b = -mk; P(i) < 0 => a = -ik, b = 1

where mk is the multiplier of the arc joining i and P(i).

(e) Compute

qi= s/ai if i is the first node on the backpath;

otherwise,

qi= (bi+lqi+l)/ai, where P(i+l) = i.

(f) Determine if a join exists; if so, add the i- and j-backpath

values of q to obtain qjoin'

(g) Determine if the current node is the first node encountered

on the root cycle (D(i) = 0). If so, multiply qi by I/FAC(i).

(h) The qi thus determined is the Zik required to perform the

ratio test

XB IZik if Zik > 0

- (XBi - CPBi)/Zik if zik < 0

cPB is found in CP(IVAR(i)).

43

(i) The ratio test may be terminated when a zero ratio is found (a

de facto winner) or we completely iterate the i- and j-backpath performing

ratio tests. The end of a backpath is signified when the first node with

depth zero is encountered for the second time. (For a rooted tree, the

root is its own predecessor and will be "encountered" twice in immediate

succession by following the predecessor relationship. On the other hand,

the nodes of a cycle all have depth zero and once the cycle is completely

iterated, you will find a previously encountered node of depth zero.)

C. PIVOT

We have now determined the entering arc (priceout), the leaving

arc (ratio test), and have generated the entering column and stored it in

array PC. The basis representation and arc flows must now be updated.

If CP(k) is the minimum ratio, then the incoming arc has been deter-

mined to be more constraining than any element of the basis. Therefore,

the incoming arc k is also the outgoing arc. The update is accomplished

by reflecting arc k. The original basis remains unchanged and only the

right-hand side need be updated. The general expression for the right-hand

side was derived in equation (1)

xB = B 1 b - B'NxN,

where: B'Ib is the old right-hand side
xN are the values of the non-basic variables.

The non-basic variables are all zero except, conceptually, the incom-

ing variable which is set at its upper bound CP(k). Therefore, only the

kth column of B N is required, which is precisely the information

44
w .'.

_ I I I *III) i- -

now stored in PC as an artifact of the ratio test. The right-hand

side (rhs) update is then:

rhs i - old rhs i - PC(i) * CP(k)
(Vi)

.,'. X(i) <= X(i) - PC(i) * CP(k).

If the ratio test determines that an exchange of basis elements

is required, a more involved update procedure takes place. The basis

representation found in P and IT must be updated, as well as the dual

variables U and the flow X. The FAC array must be maintained for nodes

on cycles and the IVAR array contains the index of the basic arc associ-

ated with each node. As such, IVAR must also be updated during the

pivot.

To conceptually understand the basis update procedure, return to

the graphical representation of the basis. The root/cycle of each

basis component is drawn at the top and the immediate successors of each

node are depicted below that node (as with a genealogical, vice a

biological, tree).

It is important to carefully distinguish between "types" of successors.

The "successors" of a node will mean those nodes immediately encountered

on all paths from a node except the backpath. "Preorder-successors" will

indicate nodes determined by iteration of the preorder function IT. Arcs

are drawn to indicate predecessor relationships (i.e., the arcs always

point "up"), with the sign of the predecessor being used to record the

"correct" orientation of the arc.

45

- . . , ° ,, . . ° . , .,

i"i

4 3

Figure 12. Pre-Pivot Generalized Network Basis

The simple basis pictured above will be used to illustrate the basis

update mechanism when the incoming arc is not the "winner" of the ratio

* test. Let the incoming arc be designated as kE(i, j) and the outgoing

arc be kL(v, w). Assume the outgoing arc is on the j-backpath (if it

is not, reorient arc k so that it is). Similarly, let node v precede

node w on the j-backpath. Assume the entering arc is kE(2, 8) and the

leaving arc is k(5, 6). The backpath from the destination node j of

the incoming arc to node v of the outgoing arc is called the "j-stem."

The J-stem in the example is along nodes 8, 6, 7, 5. Dropping arc kL(5, 6)

and adding arc k,(2, 8) forms a new basis as shown in Figure 13.

F . ss

Figure 13. Basis Update Exaumple 1

46

Another example of a basis update is shown in Figure 14.

57 6 5

2a3 a

4 3 2

kE(6,3)

t (2,11)

j - stom 3. 2

Figure 14. Basis Update Example 2

The update of any basis can be similarly accomplished by application

* of the following general rules:

1. Reverse the arc orientation of all arcs on the j-stem (which
lies on the backpath containing the leaving arc).

2. Orient the entering arc such that it precedes the j-stem and
has the same orientation as the redirected j-stem.

The basis update shown in Figure 15 displays how a new cycle is

created.

T"8

7 6 5 4 2(4, 8)

,, I,;

, (7, 5)) ,' L

(- (stem 8, 6, 7
join a 6
i- stem 4, 2, 3

S

Figure 15. Cycle Creation

47

.

F..

_7_7

As noted in the ratio test section, if the i- and j-backpaths merge,

the node at which they merge is called the join. If the leaving arc lies

beyond the join, then a new cycle is formed, as is the case in the above

example. The new cycle becomes the root of its basis component and

that component tree is "rehung" from the new cycle. The backpath from

the source node (i) of the entering arc to the node whose predecessor is

the join is known as the i-stem. In this example, P(3) - 6 - join; the

i-stem is therefore composed of nodes 4, 2, and 3. If node i lies on the

j-backpath, the i-stem is null.

The graphical display of a basis update must be translated into an

algebraic update of the data structures discussed in Section II. Each

node affected by the basis update must be "visited" by the algorithm and

the associated array values modified. Clearly, it is advantageous to

visit a node only once. A one-pass update can be achieved as described

below.

The pivot algorithm iterates up the j-stem node by node, updating

the arrays: X, IT, P, U, IVAR, and D. If a join is encountered (the

existence of a join is predetermined by the ratio test), the algorithm

switches to the i-stem and iterates up the i-stem. Upon completion of

the i-stem, the algorithm returns and completes iterating the j-stem.

The stems are iterated by using the predecessor function P.

The depth D and the dual U must be updated for all of the stem nodes

visited by the algorithm, as well as for their preorder-successors.

It is also convenient to modify IT as these nodes are visited. The

* preorder-successors of a node can be divided into two classes: the left

preorder-successors and the right preorder-successors. The left preorder-

48

successors are found by iterating the preorder list IT from the current

stem node to the stem node whose predecessor is the current stem node.

The right preorder-successors of a node are any unvisited nodes found by

further iteration of IT up to the end of the tree whose root is the

current stem node. The end of this current tree is found by checking the

depth of each preorder-successor of the stem node. If that depth is less

than or equal to that of the current stem node, then the start of a new

tree is identified.

The update of IT is relatively easy because IT changes only for nodes

on the stem and their last left and right preorder-successors.

0. IT (last right preorder-successor of i) = j

1. j-stem update of IT

a. IT (last left preorder-successor) <== first right preorder-
successor

b. IT (last right preorder-successor) <== P (stem node)
If there is no last right preorder-successor, then
IT (stem node) <== P (stem node)

2. i-stem update of IT

a. IT (last left preorder-successor) <== first right preorder-
successor

b. IT (last right preorder-successor) <== node whose predecessor
is current stem node.

Step lb differs from 2b because the predecessor relationship for the

j-stem must be reversed.

Some of the nodes encountered in the preorder may belong to the

i-stem and its preorder-successors; these nodes must be avoided during

the j-stem update, using the "preorder link." We process the part of the

j-stem below the join and then process the i-stem (if there is a join).

49

The preorder-successor of the last i-stem node is recorded and this node

is termed the "preorder link." Having finished processing the i-stem, we

return to the J-stem (or common backpath above the join) and continue

processing stem nodes and their preorder-successors. If an i-stem node

is encountered, the remainder of the i-stem and their preorder-successors

are avoided by immediately skipping to the preorder link. This subtle

processing twist significantly reduces the time spent searching for the

preorder-successors of the stem nodes.

The i-stem must be visited only if there is a join. If there is no

join, then the J-stem is appended to the i-backpath by the entering arc

and only the new preorder-successors of i (i.e., the j-stem and their

* .preorder successors) need be updated.

The method we have established for the update of the preorder-successor

relationship ensures that all the preorder-successors of a (cycle) node

are encountered before the next (cycle) node. While traversing a stem, a

stem node may be encountered with a right preorder-successor that has

depth zero and is therefore on the root cycle (e.g., Figure 16). We

.- :herefore observe that given that the leaving arc is on the backpath of

the j-stem, a cycle which is being broken will always be encountered as

the right preorder-successor of a stem node.

;.. s Tfs) ,r

Figure 16. Preorder-Successor with Depth Zero

50

From the development of the computation of Zk, it can be seen that

the arc flows will only change on the backpaths. The array X represents

the basic arc flows and must be changed for each arc on the j-stem. If

the entering arc forms a cycle, flow changes occur on the i-stem as well

as the j-stem. The update is obtained from equation (1):

XB = B lb - BNxN (Vi)

- X(i) <== X(i) - PC(i) * RATIO.

Only one element of xN (i.e., xk) affects the update of the right-hand

side. Clearly, if no cycle is created and the minimum ratio is zero, the

right-hand side is not changed.

The dual variables, stored in the array U, are determined as
:' ', CB -1

u Z c a

c B '- uB.

Therefore, ck = ui - mkui V k(i, j) c basic arcs

ui = Ck + mkuj

U. = (ck - ui)/(-mk).

Enforcing the above relationship will determine the dual variables as

the stems are traversed in turn. If a cycle is not created, only the

duals for the j-stem nodes and their preorder-successors need be computed.

For a node i and associated basic arc k, the update depends on the

orientation of arc k.

U(i) C(k) + MUL(k) * U(P(i)) for k(i, P(i)); P(i) > 0

and

U(i) = (C(k) - U(- P(i)))/(- MUL(k)) for k(P(i), i); P(i) < 0.

51

The preorder traversal scheme (coupled with the reversal of the

J-stem predecessor relationships) ensures that the dual of a predecessor

node is known prior to Its use in updating the dual of an immediate

preorder-successor.

- When a new cycle is created, the i- and j-backpaths terminate at a

new root (the newly created cycle). The duals for this entire new basis

component must be recomputed. To do this, the dual variable must be

determined for one of the cycle nodes. Algebraically, the situation is

analogous to the determination of Zk during the ratio test. Once the

dual of one cycle node is established, the dual variables for the remaining

cycle nodes and their preorder-successors may be determined.

The ratio test gives ample warning that a new cycle will be formed.

If the leaving arc kL(v, w) lies above the join, a new cycle will be

created as:

,°0'i::'

Figure 17. Leaving Arc Above the Join

The new cycle is formed (display4"i the new predecessor function) as

* shown in Figure 18. The nearly triangular system used to compute the

52

plpil) pli) ip(j)

Figure 18. Predecessor Update for New Cycle

dual variables corresponding to this newly formed basis component is

uB *C

IaI

a I

b II Il

g- 1a. g-I

Oantzig [Ref. 3, p. 423] describes how to solve systems such as

this,

. . . by treating one variable of the loop as the parameter and
evaluating all others in terms of it as we proceed around the looo.

-*Upon completion of this circuit a second expression for the parameter
will result, and by equating the two expressions we may evaluate it
numerically."

Assume the following cycle has been formed:

53

i4
Figure 19. Four Node Cycle

producing this nearly triangular system:

I "I

Ia4 b3

(u4 , u3 , u2 , u1) I a3 b2 I (c 4 , C3 , c2 , ci)II

a2 b1i

Ib4 a,

Performing the matrix multiplication and solving for u:

a4u4 + b4ul - c4 I u4 * (c4 - b4ul)/a 4

b3 u4 + a3 u3 i c 3 u3 a (c 3 -b 3u4)/a3

b2u3 + a2u2 z c, u2 (c 2 - b2u3)/a2

blu2 + alu I z cI ul s (c, - bju 2)/aI

Choosing u1 as the parameter, we obtain through forward substitution:

Il 1- (ca - b u2)

I (c! - l(L- (C7_- bz3)
a, a2 - 2u3)))

a, (I - LI (c, - '2 ', (c3 '34
1 23

1 C a 2 1c a
al I~ (C - (c2 - .-a(c - b3 (-(c-

So,

I a l [1 - a, " .3 " 4 (- b _I-

54

b, b b b c bbu 1!_1 [c, (2 (c 34 3)4 1

- " "2 3 a4 a4

bbc b bc b b b
1 [c b2c3 b2b3c4 b2b34 u
a,"' 1 (c2 a aa t

b1 2 bb 2 c3 bb 2 b 3c 4 bb 2 b3 b4 1

-- C _- + + u.
-i 1 a2 a2 a3 a2a3 a4 a2a3a4 u

c 1 c2a 1 blb2 c3 b1b2 b3c4 +blb 2 b3b4aa 2a3 aja 2a3a4 ala 2a3a4 1

1 bb b3b 4) c1 b1C2 bbb b b2 b3c4
- ala2 a3 a4 U1 ij ala2 + ala a3 ala2a3 a4

U _ b2 b b1 2 2 3 4

au1 b b b " b4

The denominator is precisely the cycle factor f previously defined as:

4 bd

1 - 11 -a
d=l ad

The sign alternation implied by the - k terms can be observed in the
a

derivation of u1 . Thus

3
3 4

;- c2 a2 a3
Cl 1 b, a 2

'c 4
c3 - 3u

Letting u a u- a
a4 ' 3 a

p55

c b c2 c bU

2u 2 a2 2 ui 1 a 1

we obtain

c b
(3~

tC2 b 2 ' a2 U)

c 1-b 1 a 2U1 a1

b a
- 1 2 bl q !x

c1 - b(u) 1

a1

* U1 Z i Xr

Looking at a similar triangular system

la 4 b3

(ul, u5, ul, uj) a3 b2 : (C4, c3, 2, c1)

I•a 2 b1

a1

we find that it is easily solved as

C4 Is 3 3bu4
4 a4 ' 3 a3

Ulf 2 2 c2 .b2u3 Ul 1 12
2' a2 a1

The solutions for the u" are the same expressions assumed for u'.

The values for u' may therefore be obtained as the solution of a similar

56

triangular system; the dual variables associated with a cycle (and hence,

a nearly triangular system) may be obtained from u'.

. To obtain the key dual value u1, we must therefore determine ui,
ui, ui, uj, and finally u1 . In general, if we have a cycle composed

of nodes 1, ... , g, the determination of the dual of one of these

nodes, ul, is found by modified forward substitution as illustrated

above. With:

u1 = uj x (1/f)

9
where f-I- I -(br/a r)

r=1

and u =cg/ag

ur (cr brUr+l)/ar Vr - g-1, ... , 1;

C is the cost of the arc associated with node g.
g

Theoretically, we may start at any node on the cycle, iterate around

. the cycle computing u' and accumulating the terms of n -ka in practice

we choose to start at the terminus of the entering arc (i.e., the j-node).

After visiting all the cycle nodes, the cycle factor f is computed and

stored in FAC for each node on the cycle and the key dual variable is

determined.

The dual of i is the keystone. From the dual of i, we can compute

the dual of j and those of the entire j-stem, as well as those of the

i-stem.

As stated, we want to start at the j-node and proceed around endinq

at the i-node. This traversal cannot be conveniently supported by either

the pre-pivot or post-pivot predecessor relationships. It is necessary

to follow the pre-pivot J-stem predecessor relationship and the reverse

of the i-stem predecessor relationship.

57

.
-

. .

To perform this intricate maneuver, the cycle factor and key dual

value of a newly created cycle is computed imediately after the ratio

test and before the basis update. First, the pre-pivot j-stem predecessor

S. relationship is iterated from the j-node to the join, computing a partial

product of the cycle factor. The i-stem is then iterated, performing no

computations other than storing the reverse predecessor relationship. (A

convenient place to do this is provided in the array U, which now contains

obsolete dual values and must be recomputed subsequently.) Once at the

end of the i-stem, the reverse i-stem path may be followed to complete

the computation of the cycle factor and the dual value of the i-node.

After this newly formed cycle has been traversed, the pivotal update can

be accomplished, following both the i- and j-stem and iterating IT to

update preorder-successors.

The update of the depth array is straightforward. If a new cycle is

formed, the nodes on the new cycle are assigned depths of zero. The

depths of the left and right preorder-successors of the i- and j-nodes

are updated as: D(s) = D(P(s)) + 1 (after the update of the j-stem pred-

ecessor relationship). If no new cycle is formed, then 0(j) = 9(i) + 1

and the preorder-successors of the j-stem nodes are updated accordingly.

Again, the preorder ensures that D(P(s)) is available when it is time to

compute D(s).

IVAR contains the index of the basic arc associated with each node.

It represents the arc which connects a node with its predecessor. If a

node has no predecessor (i.e., a single root node), then IVAR is set to

n + 1 (the number of arcs + 1). During the pivot, IVAR(j) is set to the

index of the incoming arc. As the predecessor relationship of the j-stem

58

is reversed, IVAR of each j-stem node must be updated accordingly. The

reversal of the j-stem arcs corresponds to the reordering of the rows and

columns of the current basis to obtain a triangular/nearly triangular

basis. IVAR must also exhibit this reordering of the basis elements.

To summarize the pivot steps for kE(i, j) and kL(v, w):

(0) Determine if a new cycle is to be formed (predicted by the ratio

test: the leaving arc lies above the join). If a new cycle is formed,

compute the cycle factor and the dual of i, storing the results in FAC

and U(i) respectively.

(1) Bring kE(i, J) into the basis by setting P(j) <== i (with

appropriate sign indicating arc orientation); IVAR(j) <== entering arc,

and set IT (last of the right preorder-successors of i) <== j.

(2) Iterate the j-stem, which includes the join. As the j-stem is

iterated, the predecessor relationship is reversed, with P and IVAR

updated accordingly. If the j-stem is on a cycle, the depths, D, of the

stem nodes are set to zero. Otherwise, the depth of j is D(i) + 1 and

the preorder-successors of j are assigned O(s) = D(P(s)) + 1. The dual

of j is computed as:

U(j) a C(k) + MUL(k) * U(P(i)) if P(j) > 0 or

U(j) a (C(k) - U(- P(i)))/(- MUL(k)) if P(j) < 0;

where k is the entering arc.

The duals of the rest of the j-stem and their preorder-successors

are computed similarly.

"* If the minimum ratio is non-zero, X is also updzted at this

' . point, using equation (1). Each j-stem node is visited in turn by usinq

the predecessor relationship (updating this relationship as it is

59

mbo

traversed) and the preorder-successors of each j-stem node are visited

using the preorder relationship, updating IT appropriately.

(3) The i-stem is traversed if a new cycle is formed. During this

traversal, the dual variables are updated (replacing the reverse predecessor

path temporarily stored here) as well as updating the values of X. As each

i-stem node is visited, the left and right preorder-successors of the

i-stem node are visited in preorder, updating D, IT, and U. IVAR entries

for the i-stem and its preorder-successors remain unchanged.

D. FURTHER CONSIDERATIONS

Priceout, ratio test, and pivot provide the mechanism to move from

one basic solution to a "betterN basic solution. Primal Simplex methods

must be designed to seek feasibility as well as optimality. The two most

common methods of achieving an optimal, basic, feasible solution are the

Big-M method and the two-phase simplex method. The Big-M method uses

artificial arcs with very high costs to satisfy feasibility initially and

the solution proceeds from this costly artificial start. In essence, the

Big-M costs dominate the model costs ensuring that an optimal solution

will have minimal flow on artificial arcs.

The two-phase method first solves a related problem with the same set

of constraints whose objective is to minimize the sum of the flow on

artificial arcs. If an optimal solution is found to the phase 1 problem

with an objective function value of zero, then all arcs pricing non-zero

are eliminated from further consideration in phase 2. The phase 2

objective function, which is the original objective function of the

model, is introduced and the optimal solution is sought.

60

An all artificial start proceeds by assigning IT(i) - i, P(i) i,

0(1) - 0 for 1 - 1, ... , mu nodes, and IVAR (i) n + 1 for

i - 1, ... , mi. Each node is conceptually assigned an artificial arc

which satisfies the conservation of flow requirement at that node. The

initial basis for in nodes is graphically depicted as:

Figure 20. All Artificial Start

Each of these artificial arcs is conceptually assigned a multiplier

of 1. Thus, the dual associated with each node is assigned a value equal

to the cost of the artificial arc. The flow on each of the artificial

arcs is set to satisfy conservation of flow requirements.

Demand nodes exhibit a negative external flow; to preserve non-

negativity of the right-hand side, the following adjustments must be

made:

X(i) <a - X(i) Right-hand side

P0(i) (== - P(i) Arc orientation

U(i) <= - U(i) Dual values

The 3ig-M method assigns a very large (3ig-M) cost to each of the

artificial arcs described above. These costs are represented by the ini-

tial dual values assigned to each node. If 3ig-M is chosen sufficiently

large, an optimal minimum cost solution will not include these very

costly artificial arcs with non-zero flow in the basis. The algorithm

will replace these artificial arcs with the less costly "real" arcs of

61

:-:,. . -

the problem. The choice of the Big-M cost is important. It must be

large enough to drive the artificial arcs out of the basis, but not so

large as to cause numerical (floating point) truncation errors. An

initial choice of twice the largest arc cost has proven to be effective

in most cases.

An alternative to the Big-M method is the two-phase simplex approach.

A temporary cost of 1 is assigned to each artificial arc and a temporary

cost of 0 is assigned to the remaining arcs. The algorithm solves this

modified problem to attain an initial feasible solution. A minimum-cost

feasible solution will have non-zero flow only on arcs with cost zero.

If an artificial remains in the basis with non-zero flow at the end of

phase 1, the problem is infeasible. Once phase 1 is complete, all arcs

with non-zero reduced costs are eliminated from further consideration,

the correct costs are restored to the arcs and the phase 2 problem is

solved, which is the network flow problem of interest restricted to admit

only feasible basic solutions.

It is often found that many basic arcs have no successors. This is

especially true when dealing with problems that have numerous sinks. A

basis aggregation enhancement to primal network algorithms has been

proposed by Bradley, Brown, and Graves [Ref. 6], and has been adopted in

this implementation of the GENNET algorithm. The pivotal update of the

various arrays represents much of the work performed by this algorithm.

The dual variables, U, and the depth, D, of leaf nodes (i.e., nodes with

no successors) are uniquely determined by the knowledge of the leaf

node's predecessor and the arc which connects the leaf node to its

predecessor. In consequence, these values may be easily generated

62

k~lm u m L... b,,,A,." " A

; - _ '; " ' " , , - " "* ;
'

. . " o .' . - ,' ' . . . "- -.,. .-.-" -'-

when required and need not be updated by every pivot. Additionally, the

preorder-successor, IT, of this node need no longer be maintained. While

it is certainly true that any value may be generated rather than updated,

the key is to choose values which may be easily restored.

Brown and McBride [Ref. 7] employ an array XM to facilitate the

"aggregation" of nodes. An "aggregated node" is a node with no successors

whose depth and dual variable are not explicitly maintained and must be

generated when required. The entries in XM indicate the number of

successors of each node which are not currently explicitly maintained.

If XM(P(r)) 0 0, then node r is not an aggregated node.

If an aggregated node is encountered during priceout, its dual is gener-

ated based on the dual of its predecessor and the direction, multiplier, and

cost of the connecting basic arc. Similarly, the depth of an aggregated

node r is generated as D(r) = D(P(r)) + 1. If an aggregated node, r, is

the origin or terminus of the entering arc, it is "disaggregated" by restor-

ing its dual and depth, and decrementing XM(P(r)), the number of aggregated

successors of P(r). IT, for the disaggregated node r, is updated by:

storing the preorder-successor of P(r), TEMP <-- IT (P(r)); making r the

preorder-successor of P(r), IT (P(r)) <== r; and making the previous preorder-

* : successor of P(r) the preorder-successor of r, IT (r) <== TEMP.

. The outgoing arc may isolate either its head or tail node with no

-preorder-successors and either node may then be aggregated.

Brown and McBride [Ref. 7] and Bradley et al. [Ref. 6] report signifi-

* ,, cant computational savings using this aggregated node concept, especially

when dealing with real-world problems involving few sources and many sinks.

63

*',, - -

IV. MICROCOMPUTER IMPLEMENTATION

An important emphasis of mathematical programming has long been on

the development of computer codes which will solve large-scale problems

efficiently. The network model, as a specialization of the linear

program, was one of the early breakthroughs in this area. As demonstrated,

the unique character of the network model allows for efficient data

* storage techniques and greatly simplifies the computational requirements

of the simplex method. The obvious result is that much larger problems

can be solved using a network formulation, rather than a linear program,

on the same computer; solution times and hence computational cost are

reduced. As computer memory becomes cheaper and mainframe computer

central processing units (CPU's) become faster, the problem size and speed

emphasis of mathematical programming will perhaps diminish. Indeed,

problems of more than one million variables have already been solved

* using a model introduced by Geoffrion and Graves [Ref. 20].

Advances in computer technology have permeated almost every aspect of

life in the United States. Exhaustive arithmetic calculations can be

made by anyone with a $10.00 calculator. For less than $100.00, a

programmable calculator/computer may be obtained. These radical develop-

ments have been made possible by advances in solid state electronics and

the advent of the microprocessor. A microprocessor is a collection of

many thousand electronic logical gates created as microscopic circuits on

small pieces of silicon, known as chips [Ref. 21]. Microprocessors are

perhaps best known as the controlling device in home and arcade video

64

,!.

K .

games. They also serve more practical purposes as industrial process

controllers and as the CPU of the microcomputer.

The most popular microprocessors used in today's small computers are

the 8080 manufactured by Intel, the Z80 made by Zilog, the 6800 manufac-

tured by Motorola, and the 6502 developed by MOS Technology [Ref. 22].

Each of these are 8-bit microprocessors, indicating that the basic memory

unit is 8 bits wide (a byte). These microprocessors have 16 address

lines. Each of these lines may be in one of two states: high or

low (on or off; 0 or 1). As such, these microprocessors may address 216

or 65,536, separate memory locations. A microcomputer with 65,536

addressable memory locations is known, somewhat inaccurately, as a 64K (K

stands for kilobyte) microprocessor.

The addressable memory in a microprocessor is not all available to

the user. Most microcomputer systems reserve some of that memory for the

use of the monitor, various languages, and operating systems. The Apple

II Plus microcomputer, in its 64K configuration running the Apple UCSD

(University of California at San Diego) Pascal Operating System, has a

maximum space of 39,900 bytes for a user program and variables [Ref. 23].

In the last two years, 16- and 32-bit microprocessors have emerged,

as well as some microprocessors with 20 or more address lines (making

them capable of addressing more than one million memory locations)

[Ref. 21]. Certainly, size distinctions between microcomputers and

minicomputers have diminished and microcomputers may soon be challenging

mainframes in many applications.

E. M. L. Beale, in his 1980 Blackett Memorial Lecture on the relation-

ship between operations research and computers [Ref. 24], recognizes the

65

8

emergence of microcomputers and their potential as a powerful tool.

There has been a plethora of software developed for microcomputers for

use in the statistical and trend analysis areas of operations research.

There is, however, a dearth of mathematical programming software available

to the microcomputer user and surprisingly little published research in

this area.

The potential of small computers has not escaped all mathematical

programmers and researchers. In 1979, a feasibility study [Ref. 25] was

conducted to explore the possibility of implementing mathematical program-

ming algorithms on minicomputers. The study implemented two shortest

path algorithms on two different minicomputers. It concluded that

minicomputers, although slower than mainframes, were acceptable vehicles

for shortest path algorithms. The study also hypothesized that modern

minimum cost flow network algorithms may also be excellent candidates for

minicomputer implementation.

Also in 1979, F. P. Wyman [Ref. 26] reported the implementation of an

out-of-kilter algorithm for the solution of pure minimum cost network

flow models. Additional implementations of "textbook" style PERT, CPM,

and SIMPLEX codes have been reported in hobby computer journals [e.g.,

Ref. 27].

R. H. Duff [Refs. 28, 29] reported the development of a comprehensive

microcomputer-based network optimization package. Duff's microcomputer

package is capable of solving pure minimum cost network flow problems,

elastic network problems (in which flow conservation may be violated for

a "price"), and nonlinear network problems. The algorithms chosen were

state-of-the-art optimization algorithms designed to minimize storage

66

A|

requirements and execution time. Algorithms with these characteristics

are obvious candidates for implementation on microcomputers where memory

is a limited commodity and CPU processing is in the one to three megahertz

(MHz) range.

To complete Duff's network optimization package and make it the

most versatile network optimization package available on anything but a

mainframe computer (and perhaps not even there), all that is needed is an

efficient generalized network algorithm.

The generalized network algorithms presented by Jensen and Barnes

[Ref. 1] and Kennington and Helgason [Ref 2] are thought to be too

cumbersome and inefficient for the "lean" world of microcomputinq. Elam

et al. [Ref. 30] report the development of a fast and efficient general-

ized network code, but descriptions of that code are spread throughout

the literature LRefs. 5, 30, 31, 32] and provide no clear explanation of

the basis update mechanism. As such, Brown and McBride's [Ref. 7] GENNET

Algorithm, as described in detail in the previous sections, has been

chosen as the most suitable addition to the microcomputer network optimiza-

*i tion package. For the sake of brevity, the microcomputer-based network

optimization package herein described will be referred to as Micronet.

The host computer for Micronet is an Apple II Plus with 64K of

memory. This is certainly not the most powerful microcomputer (with some

competitors featuring addressing capabilities of 16 megabytes and running

at speeds of 8 MHz), but it is one of the most popular with a population

of more than 400,000 units LRef. 33J.

It is important to recognize that the host machine is not at issue

here. This project was begun in 1979 and the Apple II was representative

674"

of the technology emerging at that time. The Apple II has continued to

be an extremely popular and representative 8-bit microcomputer. The

purpose of Micronet is to explore the capabilities and suitability of a

microcomputer as a tool of mathematical programming. Software design

techniques used in this optimization package are applicable to other

microcomputer systems as well. Larger and faster microcomputers will only

enhance the capabilities of software systems such as Micronet, making

mathematical programming on a microcomputer not only a viable, but an

attractive option.

In this spirit, the Apple II Plus continues to be used as the host

computer for the further development of microcomputer-based network

codes. The programming language used is UCSD PASCAL. This language is

fast becoming one of the most popular microcomputer-based high level

computer languages. Certainly BASIC ranks as the most popular, however,

versions of BASIC, both interpreted and compiled, lack standardization.

UCSD PASCAL, while all implementations are not identical, provides a more

standardized vehicle for the development of microcomputer programs. Duff

[Ref. 28] discusses the choice of PASCAL in great detail; his reasoning

remains sound and will not be repeated.

It is appropriate, however, to discuss some limitations of the host

microcomputer and the Apple implementation of UCSD PASCAL; these limita-

tions profoundly impact the design of any microcomputer mathematical

programming code.

Pure network problems are characterized by columns of the constraint

matrix which have non-zero entries of only +1 or -1. This unique

characteristic eliminates the need for floating point arithmetic and

68

eliminates the requirements for multiplication and division. As such,

mathematical precision is not an issue in pure network codes. Generalized

networks possess a similar structure with each column of the constraint

matrix having a +1 and a multiplier -mk, where -mk may be any

floating point number. The optimal flows in a generalized network are

therefore not necessarily integer, thus floating point, as opposed to

integer, arithmetic is required.

The Apple II Plus implementation of UCSD PASCAL provides for a 32-bit

representation of floating point numbers [Ref. 34]. A representation

using 24 bits for the mantissa of a floating point number and 8 bits for

the exponent provides six or seven significant figures of precision with

a dynamic range of 1038 to 10+38 [Ref. 35]. This precision is

roughly equivalent to IBM 360/370 single precision. Although this is a

limitation of Apple PASCAL, it is not considered to be severely debilitating

as applied to generalized networks. The purpose of the multiplier

(-ink) is to model the transformation of units of flow or change the

commodity amount as it flows through an arc [e.g., Ref. 5]. These purposes

of arc multipliers can usually be accommodated with two or three significant

figures. As such, an arithmetic precision level of 10" has been

chosen for use in this implementation of GENNET.

UCSD PASCAL requires static dimensioning of arrays. Proqraminq

* techniques which dynamically allocate memory at execution time based

on problem size and type cannot be used to provide better memory management.

This is not a critical economic issue on a dedicated microcomputer, as it

is on a mainframe computer, but it does unnecessarily limit problem size

and flexibility.

69

Source statements are compiled into a standard UCSD pseudo-code

(p-code) which is then interpreted at execution time. This system allows

for a standard p-code across all machines and only requires a machine-

dependent run time interpreter. Execution speed is therefore not as fast

as would be expected from a truly compiled language, but not as slow as

an interpreted BASIC. The most disturbing feature of Apple II PASCAL,

when used as a vehicle for mathematical programming, has proven to be

compilation speed. The nominal compilation rate for Apple II UCSD PASCAL

is two hundred source statements per minute. This means that a large

program might take 20 to 30 minutes to compile and that requirement can

be quite annoying when a program is in the developmental stage.

Other less significant limitations, which are included for the sake

of completeness, are the editable file size and maximum procedure size.

The operating system editor accommodates files of sizes up to 40 blocks

[Ref. 23]. A block represents 500 bytes of information stored on an

Apple II floppy diskette. To compose and edit large programs, several

text files must be created and connected together. The maximum size of a

compiled procedure or function is 1,200 bytes (plus any local variables).

This requires programs to be broken into smaller "pieces" than may be

logically convenient. These latter limitations are obviously not major

faults, but are interesting "quirks," which must be contended with.

Once the Apple PASCAL operating system is resident in memory, less

than 40K bytes are available for user programs and variables [Ref. 23].

As such, any mathematical programmer must be extremely conscious of the

classical space-speed tradeoffs. Certainly the efficient data storage

70

70

I. *.

techniques and basis update mechanisms exhibited by the GENNET [Ref. 7]

algorithm are mandated.

The UCSD PASCAL system allows "segmentation" or "overlaying" of

program components for large programs. When a portion of code is no

longer required, it may be "swapped" out of memory and replaced by another

segment of code. To maximize the amount of memory available for problem

representation, it is desirable to have as little memory occupied by

program code as possible. However, as more program overlaying is done,

more disk accesses are required by code swapping. Oisk accesses are slow

and the programmer is again presented with the ubiquitous space-speed

tradeoff.

Micronet consists of three major components: a master program or

driver, an editor, and a solution module. These components all have

access to a system library containing often-used functions. An online

use manual, or "help" feature, is eventually envisioned for Micronet but

has not been completely implemented as yet. The solution module has

several submodules for solving the various types of network flow problems:

. pure minimum cost (GNET), nonlinear (NLPNET), elastic with fixed charges

(ENET), and generalized networks (GENNET). A conceptual view of Micronet

is presented in Figure 21.

Duff [Ref. 28] gives a detailed description of organization, use,

and the characteristics of each component of Micronet (with the exception

of GENNET). The driver, editor, and solution module have been appropri-

ately modified/amended to allow Micronet to solve generalized networks.

A brief description of Micronet will be given here for continuity.

71

o-. . t . t . r - ---- --. - - --- - - - . -. --- . - - -.-.- -.---

MICRONET ORGAMZATION

EDITOR SOLUTION ON LNE
MOUWE MOMLE ILE

MANUAL

Figure 21. Micronet Organization

The master program coordinates the operation of the optimization

package by passing control to the editor for data manipulation, to the

solution module to solve a network model, or to the PASCAL ooerating

system to exit Mticronet. Upon completion of work by the solution or

editor module, control is passed back to the driver program. The driver

is chained to the solution module and editor so that when control is

passed between one of the three main package components, only that

component is in memory.

72

The purpose of the editor is to create, alter, transfer, and browse

data files. Data files are essentially network problem description files

consisting of a header record and records for nodes and arcs. Nodes may

be specifically assigned attributes (e.g., flow bounds, external flow

requirements), or the problem may be described using artificial arcs

representing the external flow characteristics of sources and sinks.

Problem files may be created from the keyboard or read from a text file

in SHARE format [e.g., Ref. 36]. Examples of the three types of records

follow:

Header Record

Problem Name: GENTRANS

Problem Type: GENERALIZED

Number of Nodes: 15

Number of Arcs: 30

Date Created: 1 Oct 81

Date Last Updated: 15 Nov 81

Arc Record (A Generalized Arc)

Arc Name: A

Source Node: 1

Destination Node: 5

Lowerbound: 2.0

Upperbound: 100.0

Initial Flow: 0

Unit Cost: 10.50

Multiplier: 1.18

73

.

Node Record

Node Name: Phoenix

Node Number: 5

:3: Node Kind: Demand

Net Flow: 3.0

Lower Range: 0

Upper Range: 0

Lower Penalty: 0

Upper Penalty: 0

The ranges and penalties indicated on the node record are applicable to

elastic programming and are discussed by Duff [Ref. 28].

As the information is entered into the problem record, it is screened

for consistency. Once created, a file can be altered, browsed, removed,

or transferred by choosing the appropriate editor option.

If the solution module is chosen from the command level, the user is

prompted to insert a disk, containing the problem file, into one of the

Apple II's disk drives. Micronet then displays a catalog of the disk and

.. the user selects the problem to be solved. At this point, the header

record is read and based on the problem type, the appropriate solution

submodule is automatically invoked. Figure 22 displays the solution path

selection logic.

If the problem type is a generalized network, the GENNET solution

module is chosen. This module implements the previously described GENNET

Algorithm in a segmented PASCAL Program. The program is split into four

segments as shown below:

Main Program

Input - Initialization - Solution -a. Report

74

4°

The segmentation of the program represents this space-speed ti-ade-off

decision that must be made. The main program calls each of the segments

in turn, "swapping" out of memory the previously used segment. The main

program declares all global variables and thereby provides for communica-

tion between segments. These variables remain in memory throughout the

use of the solution module. Variables local to the individual segments

occupy memory only when that segment is active.

The input segment first presents the user with a menu requesting

a destination for the results (disk file, printer, serial interface, or

terminal), whether a pivot-by-pivot trace is required, and whether a

listing of the problem arcs and nodes is desired. The input -.eqment

establishes the maximum problem size at 100 nodes and 500 arcs. The

input file is read, and problem variables are initialized. Lower bounds

are translated out and the resulting cost of the lower bound modification

is recorded.

During this phase of the solution procedure, the user is required to

interact with the computer by answering menu-driven questions, inserting

a problem disk, and choosing a problem. Great care has been exercised to

ensure that an incorrect user response will illicit a helpful (or admonish-

ing) message from the program rather than a premature program termination.

Having read the problem, the header record, arc records, and node records

'i have been converted to the streamlined data structures of GENNET.

During the initialization segment, a Big-M start is set up, with the

initial basis appearing as a forest of one-trees. Big-M is determined by

doubling the largest arc cost of the problem. The arcs are sorted by

head node and stored in that order in the array T. T(k) contains the

75

4 1

TPROBLEM SOLUTION

ADAT

NOWWRIN ESAGE ISSELIE

.TYP

Figur 22. SouiNMoueOlcto o

FUNCTONS LNE7R

tail of arc k. The head node pointers in H are also set up at this time

and the arrays describing arc characteristics are sorted corresponding to

the order of T. Non-negativity of the right-hand side is enforced at this

point, with the dual variables and predecessors being appropriately updated.

Having initialized the problem, the program now executes the solution

segment. Two new arrays must be introduced at this point for operation

of the candidate queue, making this the most space-critical segment. As

such, the coding in this segment is terse to maximize efficiency and

acceptable problem size. Larger problems could be accommodated if the

solution module were segmented into smaller components such as priceout,

ratio test, and pivot. This would, however, cause multiple memory-to-disk

"swaps" for each pivot, and disk operations are extremely slow compared

*- . with core-memory operations. The decision has been made to sacrifice

problem size in favor of solution speed. To perform memory "swaps" for

each pivot is considered to be prohibitively slow.

The operation of the solution module is split into the three logical

steps of the simplex method: priceout, ratio test, and pivot. The

candidate queue of "interesting nodes and good arcs" is initialized with

the sink nodes--if none are found, the queue may be initialized with any

node. Completion of the solution module is determined by exceeding a

preset maximum number of pivots or by pricing out every non-basic arc and

determining that none price favorably.

If the pivot count has not been exceeded and the solution module ends

with a possible optimal solution, the final report segment is called.
..-

This final segment fi.st determines if there are any artificial arcs left

in the basis with non-zero flow. If there are, the solution is not

77

. . . .

feasible. The sum of the flow on the artificials is recorded and the

problem is resolved using a larger Big-M cost. After this solution

iteration, if a non-feasible solution is again obtained, the total flow

on the artificial arcs is compared to the previous total. If the arti-

ficial flow has decreased, Big-M is again increased and the problem is

again resolved. If the artificial flow has not decreased from the

previous iteration, the solution process is terminated and the problem is

declared infeasible.

-. Figure 23 displays the input arrays of a small generalized network

problem and Figure 24 exhibits the report of an optimal solution. The

final flows indicated on the arcs are flows in addition to arc lower

bounds.

.78

.°

-° 7
Vl

APPLENET - GENNET MODULE
I OF MAR 82

(500 ARC 100 NODE VERSION]
DATE: 19 APR 82

FILE: PROB:GT2.NET CREATED: 18 SEP 81 UPDATED: 14 APR 82
NUMBER OF NODES a 15 NUMBER OF ARCS - 30

* ARC LIST ...

ARC FROM TO UNIT UPPER LOWER
NAME NODE NODE COST GAIN BOUND BOUND

1 4 3 33.84 0.99 1009.00 0.00

2 2 3 15.47 1.00 1000.00 0.00

3 1 5 53.54 0.74 1000.00 0.00

4 2 5 26.76 0.74 1090.00 0.00
5 3 5 73.49 1.00 1000.00 0.00
6 5 5 52.52 1.00 1000.00 0.00
7 3 6 35.12 0.91 1000.00 0.90

8 5 6 11.12 1.00 1000.00 0.00

9 4 7 59.56 1.17 1000.00 0.00
10 2 7 88.38 1.06 1000.00 2.10
11 4 8 84.12 1.00 1009.00 0.00

12 2 8 21.86 0.92 1000.0 3.09

13 4 9 3.46 1.00 1000.00 0.L0

14 3 9 29.72 1.00 1090.00 0.00

15 4 10 6.12 1.00 1000.00 0.90

16 2 10 31.08 0.96 1000.00 0.00

17 3 10 1.07 1.07 1000.00 0.00
18 5 10 44.44 1.00 1000.00 0.00

19 1 11 67.15 0.91 1000.00 0.00

20 2 11 59.83 0.79 1800.00 0.00
21 3 11 59.46 1.17 1000.00 8.00

22 5 11 71.42 1.30 1006.00 0.00
23 2 12 8.88 1.18 100.00 0.00

24 1 13 28.22 0.83 1000.00 0.10

25 4 13 77.34 1.00 1000.90 0.00
26 3 13 45.60 1.00 1000.30 0.00
27 5 13 20.67 4.88 1000.00 3.00
28 4 14 37.76 1.13 1000.n0 0.00
29 2 14 18.16 0.98 1000.00 0.00

30 3 15 67.62 1.00 100a.00 0.00

NODE LIST ... [FOR THOSE NODES EXPLICITLY IN THE DATA FILE I

NODE NODE NET NODE
NAME NUMBER FLOW STATUS

1 1 22.86 SUPPLY

2 2 177.14 SUPPLY
6 6 -19.39 DEMAND
7 7 -3.64 DEMAND
8 8 -24.92 DEMAND
9 9 -9.38 DEMAND

10 10 -14.07 DEMAND
11 11 -56.91 DEMAND
12 12 -2.45 DEMAND
13 13 -30.93 DEMAND
14 14 -21.76 DEMAND
15 15 -16.55 DEMAND

Figure 23. Generalized Network Problem

79

OPTIMALITY OBTAINED IN 23 PIVOTS

ARC FROM TO COST UP-BOUND DUAL FLOW ABOVE LB

24 1 13 28.2200 1000.00 -49.7936 22.9609
2 2 3 15.4700 1000.00 -32.9223 115.089
7 3 6 35.1200 1000.00 -48.3923 15.4126

ART 4 4 0.00300 INF -220.000 0.0000
4 2 5 26.7600 100.00 -80.5517 7.24931
8 5 6 11.1200 1001.00 -91.7718 5.35449
1 2 7 88.3800 1090.00 -114.436 1.43396
12 2 8 21.8600 1003.00 -59.5450 27.0870
14 3 9 29.7290 1100.00 -78.1123 9.38000
17 3 10 1.07003 1033.00 -46.2264 13.1495
21 3 11 50.4600 1009.00 -84.4891 48.6410
23 2 12 8.88000 10CR.80 -35.4257 2.07627
26 3 13 45.6000 1000.00 -93.9923 11.9562
29 2 14 18.1600 1000.00 -52.1248 22.2041
30 3 15 67.6200 100.00 -115.012 16.5530

VALUE OF THE OBJECTIVE FUNCTION- 8.94934E3

FINAL DUMP * * * PIVOTS:23 DEGENERATE PIVOTS:3 CYCLES CREATED:4

Figure 24. Generalized Network Solution

- 80

...............................---

V. CONCLUSIONS AND RECOMMENDATIONS

This project was initiated for two reasons. The first was to better

understand generalized networks and to gain an appreciation for and

familiarity with the data structures and design of large-scale mathemati-

cal programing algorithms. Secondly, an objective was to explore the

suitability of a microcomputer as a tool of operations research.

The design and implementation of a large-scale mathematical program-

' ming project has been presented here in great detail (only the memory

size of the Apple II microcomputer limits the code to medium-sized

problems). In mathematical programming in general and microcomputer

programming in particular, the requirement to use sparse data structures

and efficient computational mechanisms cannot be overemphasized. The

programmer must vigorously search for ways to condense coding segments

and use mathematical simplification/insight to reduce object code and

computational overhead. At the same time, a computer program must have

an easily accommodated user interface if it is to be of real value.

While the programmer must be terse and exceedingly efficient when

*- designing a solution module, that same programmer must be lavish when

designing the man-machine interface. The primary communications interface

for the microcomputer is the keyboard. Mis-stroked keys must be screened,

and incorrect user inputs must be tolerated by the program. Single

stroke responses to menus have been found to be the best method of

communication. When numerical data is required, the user must be provided

the luxury of easily amending the input.

81.
"-9 * . ,. . 3." - " " . . i. - : - - " ' . . , . ._ • :" .- ._

The network optimization package, as described in this thesis,

accommodates both the lean solution module and forgiving user interface

requirements. The editor component of the package provides the primary

man-machine interface and is designed to prompt and edit all inputs. The

solution modules have been coded very succinctly and utilize the extremely

efficient data structures of which the GENNET algorithm is exemplary.

This project has demonstrated that serious mathematical proqramming

can be accommodated by microcomputers. The primary drawback of micro-

computers in this endeavor is considered to be the slow compilation

rate. However, the disadvantages associated with slow compilation

represent an initial development cost and as such are considered acceptable,

given the utility of the resulting product.

The integrated structure of Micronet eases the burden of data input

requirements. Laborious keyboard sessions may be avoided if problems,

existing as textfiles on mainframes, are transferred to a microcomputer

textfile. The Micronet editor has the ability to create a problem file

of arc and node records from a textfile in SHARE format [e.g., Ref. 36].

Alternatively, a computer-based problem generation technique could be

employed. In so doing, a microcomputer (or any computer) is capable of

solving problems which are much larger than can be reasonably created

from a keyboard. Real-life problems to be solved by microcomputers may

well be based on microcomputer data files. In this case, data input

requirements could again be automated.

Microcomputers continue to evolve at an extremely rapid rate.

Prices are falling while memory addressing capability and CPU speed are

eing enhanced. Some microcomputers can address up to 16 megabytes of

82

memory, perform double precision arithmetic using a 64-bit representation

of floating point numbers, and have internal clock speeds eight times as

fast as the Apple II. As such, it is considered pointless to discuss

solution speeds, precision, and problem size. The current code accommo-

dates problems of sizes up to 100 nodes and 500 arcs, with execution

times averaging .5 seconds per simplex iteration. Certainly any published

figures could easily be eclipsed by new entries in the microcomputer

market, costing little more than the original list price of a fully

equipped Apple II. This project has demonstrated that efficient algorithms

can be constructed and implemented on microcomputers for the broad class

of problems which may be modelled by a generalized network. The sparse

data structures and computational efficiency afforded by modern mathematical

programming codes are well-suited for implementation on microcomputers.

Managers, scientists, small businesses, and government agencies

purchasing microcomputers for other than mathematical programming purposes

can feasibly add a microcomputer optimization package. Small colleges

and businesses often cannot afford access to a mainframe computer optimi-

zation package. The development of microcomputer-based mathematical

programs make these management and decision-making tools available to a

much wider audience.

Mathematical programming software for microcomputers is currently in

scarce supply, while the population and availability of microcomputers is

growing at a breathtaking rate. As managers and operations researchers,

we must take full advantage of the power and flexibility of the micro-

computer and begin to export mathematical programming methods to the

large audience of microcomputer users. It is doubtful that mainfrane

83

computers will be replaced as the primary tool of the operations researcher

and mathematical programmer. However, the advantages and techniques of

scientific management through mathematical programming should be made

available to the "common man" (or at least the common manager) through

the vehicle of microcomputers.

8

48

O1. F1,T77 7 --

LIST OF REFERENCES

1. Jensen, P. and Barnes, J., Network Flow Programming, John Wiley &
Sons, New York, 1980.

2. Kennington, J., and Helgason, R., Algorithms for Network Programminq,
John Wiley & Sons, New York, 1980.

3. Dantzig, G., Linear Programming and Extensions, Princeton University
Press, Princeton, New Jersey, 1963.

4. Bradley, G., "Survey of Deterministic Networks," AIIE Transactions,
Vol. 7, No. 1 (1974), pp. 60-87.

5. Glover, F., Hultz, J., Klingman, D., and Stutz. J., "Generalized
Networks: A Fundamental Computer-Based Planning Tool," Management
Science, Vol. 24, No. 12, (1978) pp. 1209-1220.

6. Bradley, G., Brown, G., and Graves, G., "Design and Implementation of
Large Scale Primal Transshipment Algorithms," Management Science,
Vol. 24 (1977), No. 1, pp. 1-34.

7. Brown, G. G., and McBride, R. D., "Solving Generalized Networks,"
manuscript (54 pgs.) presented at ORSA-TIMS Meeting, Detroit,
Michigan, 21 April 1982.

8. Brown, G., and Wright, W., "Automatic Identification of Embedded
Structure in Large-Scale Optimization Models," in Large-Scale
Linear Programming, (G. Dantzig, M. Dempster, and M. Kallio, Eds.),
.nternational institute for Applied Systems Analysis, Laxenberq,
Austria, 1981, pp. 781-808.

9. Anton, H., Elementary Linear Algebra, John Wiley & Sons, New York,
1977.

10. Koopmans, T. C., "Optimum Utilization of the Transportation System,"
Proceedings of the International Statistical Conferences, Washington,
D.C. (1947), published in Volume 5 (1949), (Also in Scientific
Papers of Tjalling C. Koopmans, Springer-Verlag, New York (1970),
p. 184.)

11. Johnson, E., "Networks and Basic Solutions," Operations Research,
Vol. 14, No. 4 (1966), pp. 619-623.

12. Glover, F., Karney, D., and Klingman, D., "The Augmented Predecessor
Index Method for Locating Stepping Stone Paths and Assigning Dual
Prices in Distribution Problems," Transportation Science, Vol. 6,
No. 2 (1972), pp. 171-179.

85

o' --'. . . -

13. Glover, F., Klingman, D., and Stutz, J., "Extension of the Augmented
Predecessor Index Method to Generalized Network Problems," Transporta-
tion Science, Vol. 7, No. 4 (1973), pp. 377-384.

14. Knuth, D. E., The Art of Computer Programming, Vol. 1 (Fundamental
Algorithms), Addison-Wesley, Reading, Massachusetts, 1968.

15. Graves, G. W., "Theory of Permutation Triangulation with Application
to Network Flow Problems," Working Paper No. 267, Western Management
Science Institute, UCLA, (May 1977).

16. Luenberger, D. G., Introduction to Linear and Nonlinear Programming,
Addison-Wesley, 1973.

17. Orchard-Hays, W., Advanced Linear-Programming Computing Techniques,
McGraw-Hill, New York, 1968.

18. Beale, E. M. L., Mathematical Programming in Practice, John Wiley &
Sons, New York,, 1968.

19. Mulvey, J., "Pivot Strategies for Primal-Simplex Network Codes,"
Journal of the Association for Computing Machinery, Vol. 25 (1978),
pp. 266-Z70.

20. Geoffrion, A. M. and Graves, G. W., "Multicommodity Distribution
System Design by Benders Composition," Management Science, Vol. 20,
No. 5 (January 1974), p. 822.

21. Osborne, A., An Introduction to Microcomputers, Vol. 1, McGraw-Hill,

1980.

22. Scanlon, L. J., 6502 Software Design, Howard W. Sams & Co., 1981.

23. Luehrmann, A. and Peckham, H., Apple Pascal, A Hands On Approach,
McGraw-Hill, 1981.

24. Beale, E. M. L., "The Blackett Memorial Lecture 1980. Operational
Research and Computers: A Personal View," Journal of the Operational
Research Society, Vol. 31, pp. 761-767, September 1980.

25. Elam, J., Klingman, D., and Mulvey, J., "An Evaluation of Mathematical
Programming and Minicomputers," European Journal of Operational
Research, Vol. 3, pp. 30-39, January 1979.

26. Wyman, F. P., "3000 Arcs for 3000 Bucks: How to Justify a Personal
Computer for Your OR/MS Department," Interfaces, Vol. 9, pp. 75-80,
August 1979.

27. Shore, M. L., "Shortest Paths," Creative Computing, November 1980,
pp. 108-113.

86

4t

28. Duff, R. H., A Microcomputer-Based Network Optimization Package,
M.S. Thesis, Naval Postgraduate School, Monterey, CA, September
1981.

29. Brown, G. G. and Duff, R. H., "A Microcomputer-Based Network
Optimization Package." (Presentation and live demonstration).
CORS/ORSA/TIMS Meeting, Toronto, Canada, 4 May 1981.

30. Elan, J., Glover, F., and Klingman, D., "A Strongly Convergent
Primal Simplex Algorithm for Generalized Netowrks," Mathematics
of Operations Research, Vol. 4, No. 1 (1979), pp. 39-59.

31. Glover, F. and Klingman, D., "A Note on Computational Simplifications
in Solving Generalized Transportation Problems," Transportation
Science, Vol. 7, No. 4 (1973), pp. 351-361.~/

32. Glover, F., Hutz, J., Klingman, D., and Stutz, J., "A New Computer-
Based Planning Tool," Research Project CCS 289, Center for Cybernetic
Studies, University of Texas at Austin, 1977.

33. Libes, S., "Bytelines--News and Speculation about Personal Computers,"
BYTE--The Small Systems Journal, Vol. 7, No. 8 (August 1982), p. 446.

34. Espinsoa, C., Apple II Reference Manual, Apple Computer Inc., 1977.

35. Miller, A. R., Pascal Programs for Scientists and Engineers, SYBEX,
1981.

36. Clasen, R. J., "The Numerical Solution of Network Problems Using
the Out-of-Kilter Algorithm," RAND Corporation Memorandum, RM-5456-PR
Santa Monica, CA, March 1968.

87

. . *

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93940

3. Chairman
Department of Operations Research (55)
Naval Postgraduate School
Monterey, CA 93940

4. Professor Gerald G. Brown (55Bw) 100
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940

5. Professor Alan R. Washburn (55Ws)
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940

6. Major Richard H. Duff, USMC
H & HS-18 MACG-18 (S-4)

. 1st MAW FMFPAC

FPO San Francisco, CA 96603

7. Professor R. D. McBride
School of Business Administration
University of Southern California
Los Angeles, CA 90007

8. Lieutenant Commander Michael E. Finley, SC, USN 2
1552 Beachview Drive, Lake Christopher
Virginia Beach, VA 23464

9. Professor George B. Dantzig
Operations Research Department
Stanford University
Stanford, CA 94305

88

I 75

FILME

3m 8 i3

